

Effect of 2011 Earthquake on Japanese Nuclear Reactors

March 16, 2011 (Updated 3/31/2011)

D.P. Griesheimer Adjunct Assistant Professor University of Pittsburgh

2011 Tōhoku Earthquake...

2:46pm, March 11, 2011

- Moved Japan 8 feet
- Shifted Earth 10 cm (on axis)

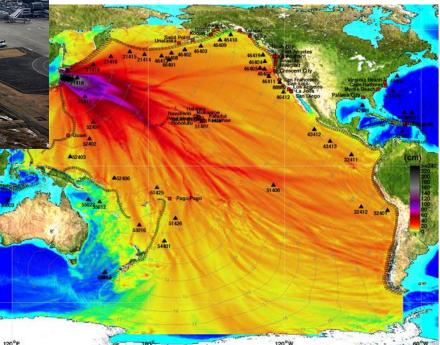
0

University of Pittsburgh Nuclear Engineering Program Magnitude 9.0

4th Largest Recorded Earthquake
Energy release: 9.32 Ttons TNT

Associated Press

...and Tsunami



Observed heights: 11-24 feet

Affected entire pacific ocean

 (\bigcirc)

University of Pittsburgh Nuclear Engineering Program & Inundated 420 miles of eastern coast of Japan Arrived 10-60 minutes after earthquake

Devastation

27,000+ Dead/Missing

US Navy/M.M. Bradley

300,000 Homeless
4.4M Powerless
1.5M Waterless

Devastation

US Air Force/K.R. Menchaca

US Navy

- Fujinuma irrigation dam ruptured, destroying 1800 homes
- Several trains in Myagi / Iwate derailed and/or washed away
- Oil refineries in Ichihara and Sendai ablaze
- Entire towns leveled or washed into the ocean

Effects on Nuclear Power Plants

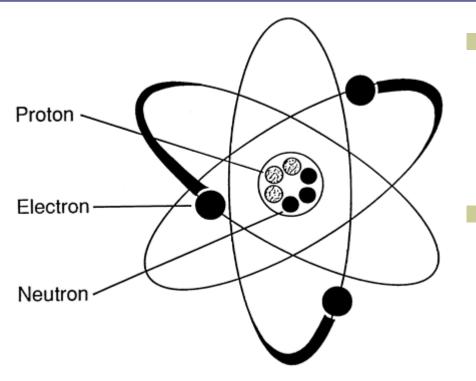
- Since the earthquake the majority of news has focused on damage to 4 nuclear power reactors near the quake epicenter
- We will consider what happened and why

University of Pittsburgh

Nuclear Engineering Program S

Primorskaya Onagawa (3 units): Fire in turbine building Fukushima I (6 units): 13 generators failed Sea of Japan 4 reactors destroyed Argonne National Laboratory Fukushima II (4 units): Loss of condenser cooling Tokai (1 unit): Pump failure 2 of 3 generators failed

Nuclear Power in Japan


- 55 Power Reactors (17 sites)
- Produces 22.5% of electricity
- 9.7% of total energy consumption

Presentation Objectives

- Before we discuss the ongoing accident at Fukushima Daiichi, it will be useful to understand some basic concepts and terminology about radiation and nuclear reactors.
 - Emphasis on Boiling Water Reactor (BWR) designs found at Fukushima Daiichi

Atomic Structure

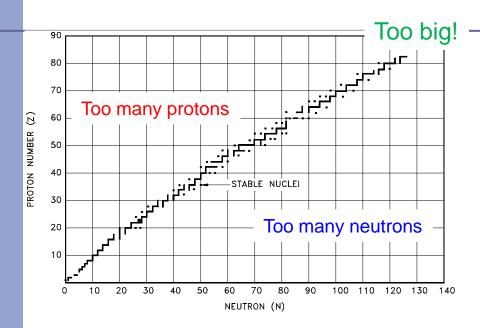
Electrons

- Negatively charged particles orbiting nucleus
- Forms chemical bonds with other atoms

Protons

- Positively charged particles in nucleus
- Number of protons determines the element type

Neutrons


- Charge-less particles in nucleus
- Stabilize the nucleus
- Atoms of the same element may have different numbers of neutrons

Isotopes and Nuclides

- **Nuclide** A type of atom characterized by the number of protons and neutrons in the nucleus of every atom of this type. Examples: ${}^{1}_{1}H$, ${}^{4}_{2}He$, ${}^{235}_{92}U$
- **Isotopes** Atoms with the same number of protons (same element) but containing different numbers of neutrons.
 - Nuclides with same atomic number but different atomic masses.

Examples: ²³⁴₉₂U, ²³⁵₉₂U, ²³⁶₉₂U, ²³⁸₉₂U, ²³⁸₉₂U, ²³⁸₉₂U

Radioactive Decay

Radiation

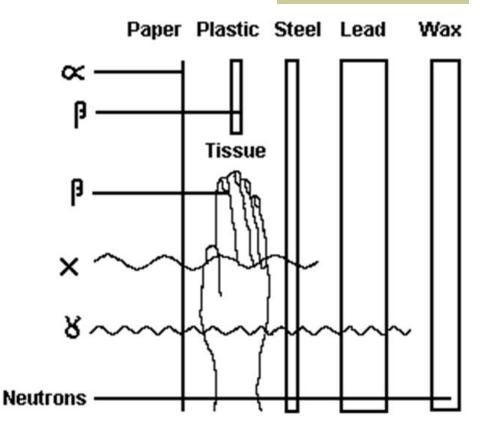
- Energy released from an unstable nucleus
 - Subatomic particles
 - Photons

- Not all combinations of neutrons and protons are energetically favorable
 - Nuclei with an unfavorable combination of neutrons and protons will attempt to reach a lower energy state
 - Accomplished by radiating energy out of the nucleus
 - Released energy referred to as radiation
 - Changes to nucleus release much more energy than comparable chemical reactions

Radioactive Decay

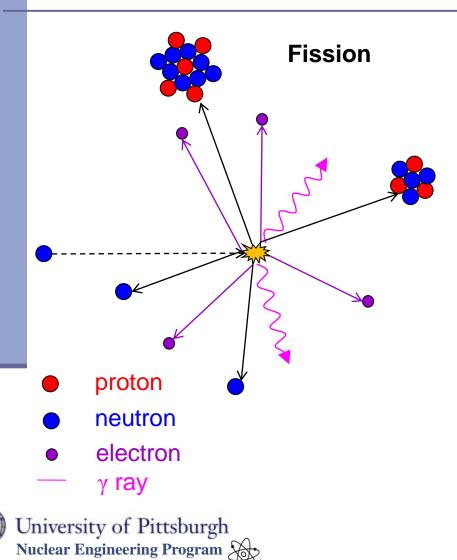
Any atomic process that releases energy is referred to as radioactive decay

- Energy emitted from the atom is called **radiation**.
- Unstable nuclides subject to radioactive decay are referred to as radionuclides or radioisotopes.


- All radionuclides will eventually undergo radioactive decay.
 - Time until decay for any atom is random
 - Rate of decay given by half-life
- Any material containing measurable quantities of one or more radionuclides is referred to as radioactive.
 - Unintended presence of radioactive material is called contamination

Radiation

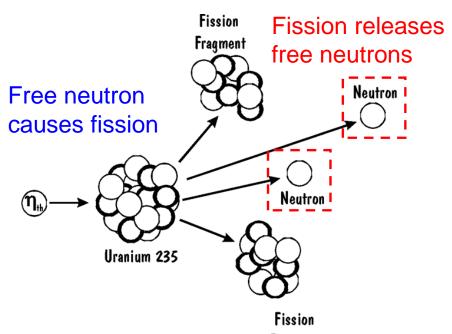
- Several different types of radiation
 - Each has different interaction properties
 - Energy deposition in tissue poses health risks
- External Exposure
 - Radiation enters body and is absorbed by living tissue
- Internal Exposure


University of Pittsburgh Nuclear Engineering Program &

- Radionuclide is ingested or inhaled and retained in tissue
- Upon decay, radiation is released directly into surrounding tissue

- Shielding used to limit external exposure
 - Effective shielding materials depend on type of radiation

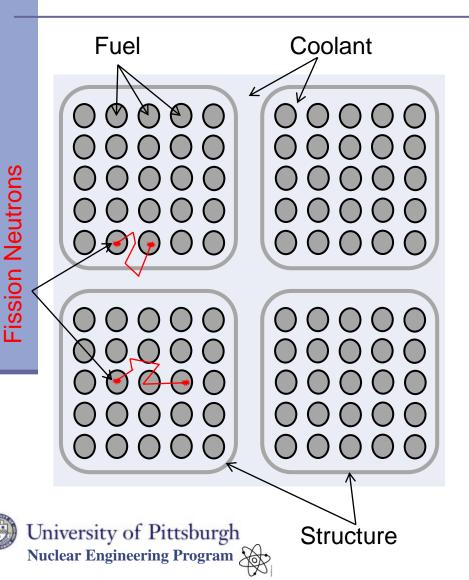
Nuclear Fission



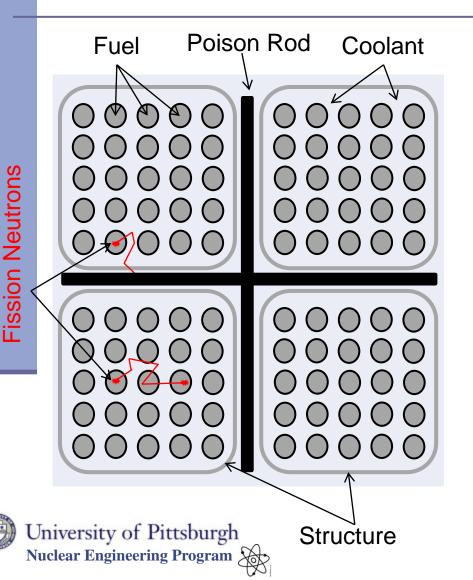
Some large nuclides are quasi-stable

- Uranium, Plutonium
- Addition of 1 extra neutron will cause them to fission (split in half)
- During fission an unstable nucleus is split in half
 - 2 new nuclei (referred to as fission products)
 - Extra neutrons
 - Gamma rays
- Extremely energetic reaction
 - 200 MeV/fission

Fission Chain Reaction


- Free neutrons are key to nuclear fission
 - Caused by neutrons
 - Produces neutrons
- Possible to create a self-sustaining chain reaction
 - Fission neutrons cause additional fission events
 - Basis of fission power reactors

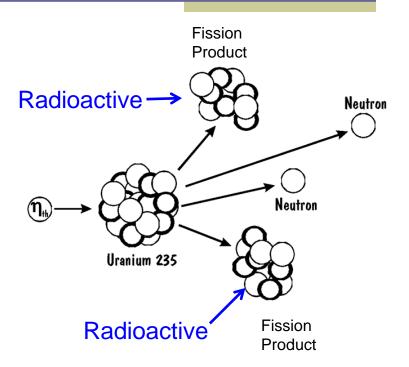
Fragment



Basic Reactor Design

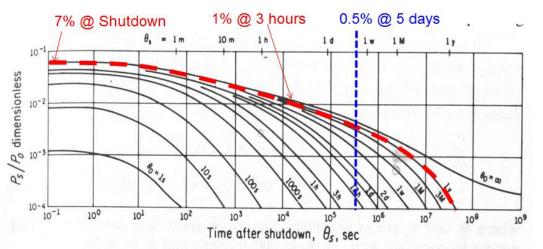
- Choose materials and arrangement for chain reaction
 - Fuel
 - Coolant/Moderator
 - Structure
- Basic Process
 - Fission neutrons born in fuel rods cause fissions in adjacent fuel
 - Coolant flowing past fuel rods removes heat produced by fission

Basic Reactor Design



- Control of chain reaction by movable control rods
 - Neutron poison
 - Absorbs neutrons and stops chain reaction
- Western reactor designs also employ negative feedback effects
 - Temperature increase or loss of moderator stop chain reaction

Basic Reactor Design


- Fission reactors have a "tight" neutron economy
 - Design must carefully balance neutron production and absorption for a chain reaction
 - Easy to stop chain reaction with neutron poisons...
 - Inefficient fuel arrangements will not allow a chain reaction...
- What's the problem?
 - Many fission products created in fission are radioactive nuclides
 - After chain reaction stops these nuclides will continue to decay and release energy, which is referred to as decay heat.

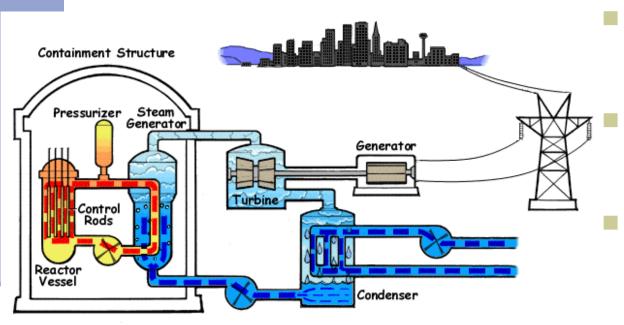
Decay Heat

Reproduced from El-Wakil, "Nuclear Heat Transport." ANS (1993)

For a 1000 MWt reactor decay heat is:

- 70 MW immediately after shutdown
- 10 MW after 3 hours
- 5 MW after 5 days
- 1 MW after 2 months
- 100 kW after 1 year

- During operation decay heat accounts for ~10% of reactor power
- After shutdown decay heat decreases as fission products decay away
 - Within hours decay heat is down to 1% of operating power
 - Still a significant source of heat for power reactors
 - Without cooling decay heat can cause fuel to melt


Modern Reactor Designs

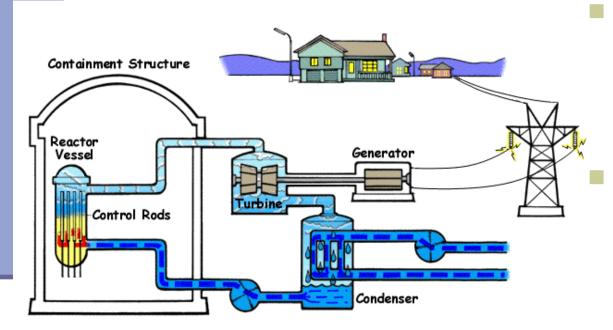
- Nuclear reactors are classified by the type of coolant that they use
- Many categories of reactors have been designed and built over the last 60 years
 - Light water reactors (US, Japan)
 - Heavy water reactors (Canada)
 - Gas cooled reactors (UK, Japan, Europe)
 - Liquid metal/liquid salt reactors (US, France)
- Commercial power reactors in the US and Japan are light water reactors
 - Rely on steam cycle and H₂O for coolant
 - Two basic types of light water reactors

) University of Pittsburgh Nuclear Engineering Program &

Pressurized Water Reactor

Pressurized Water Reactor [PWR]

Animated Diagram of a Pressurized Water Reactor. From the NRC Website. Public Domain. Wikipedia: "Pressurized Water Reactor", 1-6-2008


Water pumped though reactor is pressurized and does not boil

Intermediate heat exchanger creates steam for generating electricity

- **Operating plants**
 - US: 69 plants (68 GW electric)
 - Japan: 24 plants (19 GW electric)

Boiling Water Reactor

Boiling Water Reactor [BWR]

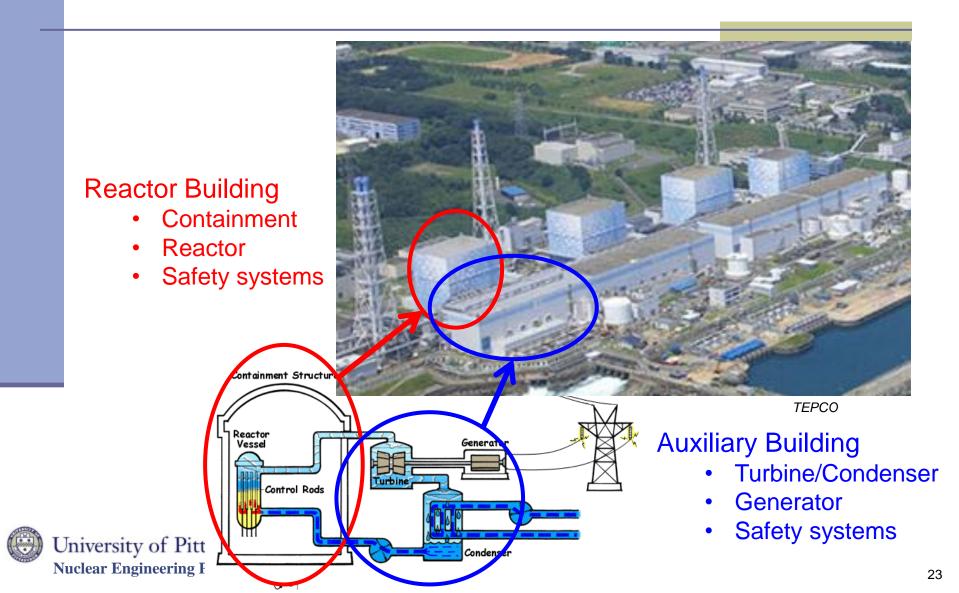
Animated Diagram of a Boiling Water Reactor. From the NRC Website. Public Domain. Wikipedia: "Boiling Water Reactor", 1-6-2008

Water pumped though reactor is allowed to boil and steam passes directly through turbine, generating electricity

- Operating plants:
 - US: 35 plants (35 GW electric)
 - Japan: 30 plants (28 GW electric)
 - 6 units at Fukushima Daiichi
 - 4 units at Fukushima Daini
 - 3 units at Onagawa

Fukushima Daiichi

TEPCO



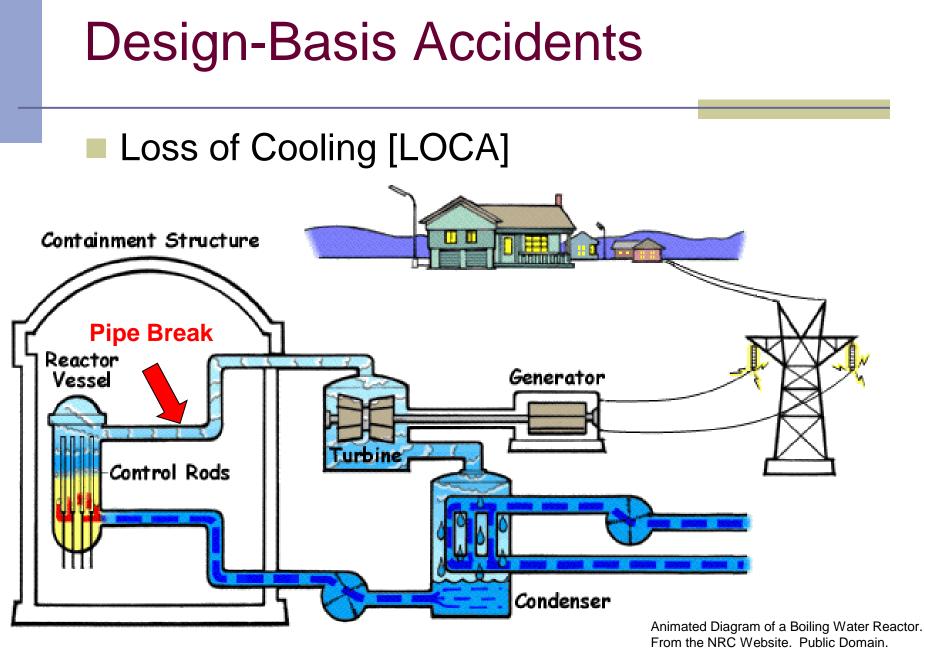
- Ohkuma, Fukushima
- Tokyo Elec. Power Co.
- 6 BWR Reactors
 - 4546 MWe Capacity
 - Built 1970-1979

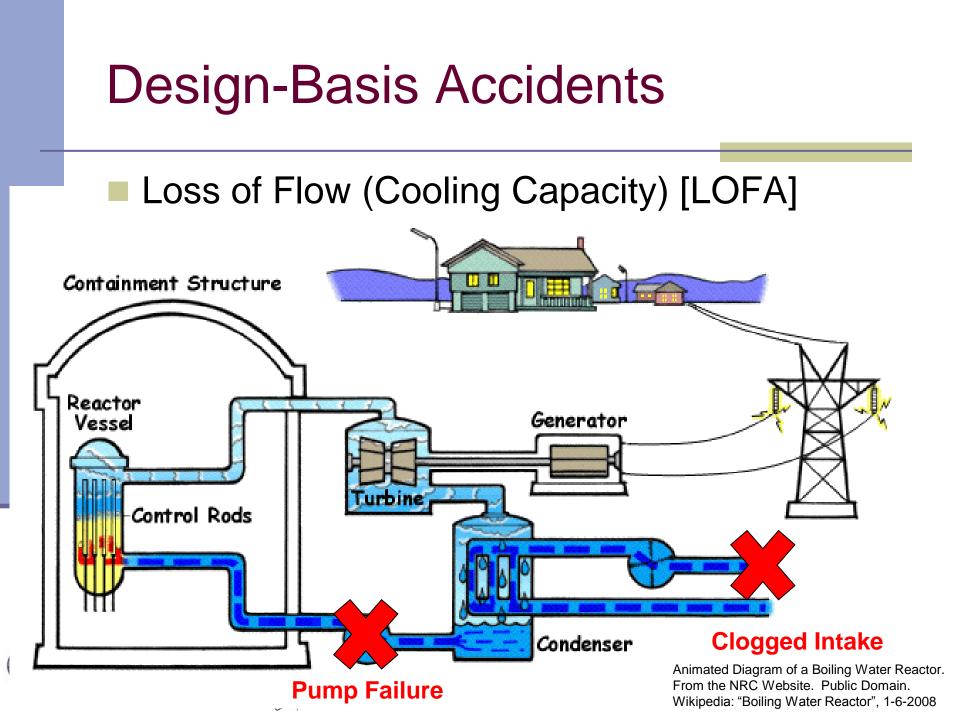
Fukushima I Nuclear Power Plant - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Fukushima_I_Nuclear_Power_Plant

Unit	Type ^[12]	First criticality	Electric power	Reactor supplier
Fukushima I – 1	BWR-3	October 1970 ^[11]	460 MW	General Electric
Fukushima I – 2	BWR-4	July 18, 1974	784 MW	General Electric
Fukushima I – 3	BWR-4	March 27, 1976	784 MW	Toshiba
Fukushima I – 4	BWR-4	October 12, 1978	784 MW	Hitachi
Fukushima I – 5	BWR-4	April 18, 1978	784 MW	Toshiba
Fukushima I – 6	BWR-5	October 24, 1979	1,100 MW	General Electric
Fukushima I – 7 (planned)	ABWR	October 2016 ^[13]	1,380 MW	
Fukushima I – 8 (planned)	ABWR	October 2017 ^[13]	1,380 MW	

Fukushima Daiichi

Reactor Safety


- During reactor design a tremendous amount of effort is spent on safety analysis
 - Understanding how plant will behave in off-normal situations
 - Designing active and passive safety systems to ensure plant can respond to abnormal conditions
- Before construction every plant design must be approved by regulatory agency
 - Builder must prove (via analysis) that plant can withstand a set of site-specific design-basis accidents set defined or approved by the regulator.


Design Basis Accidents

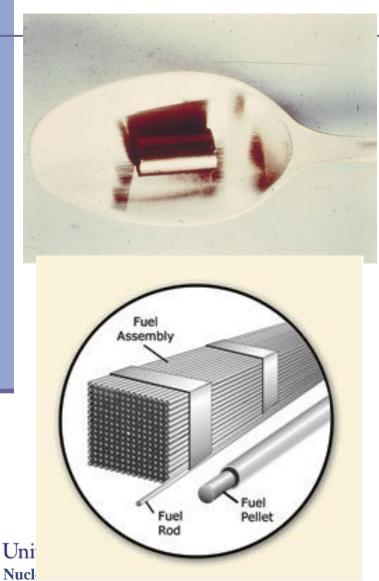
- Design basis accidents (DBAs) are a set of specific accident scenarios postulated by the regulatory agency.
 - Intended to represent the most severe <u>credible</u> accident that the plant could encounter.
 - DBAs are events for which the safety systems are designed to remain functional both during and after the event, thus assuring the ability to shut down and maintain a safe configuration.
 - The design basis earthquake for Fukushima was 8.0
 - The design basis tsunami for Fukushima was 5.7 meters (19')
 - Other DBAs include specific failures of systems (pumps, pipe breaks, etc.) in the plant, as well as combinations of failures.

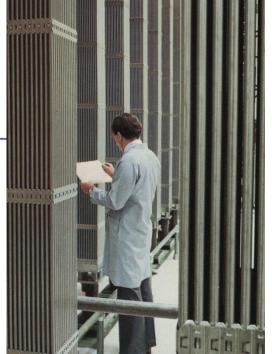
From the NRC Website. Public Domain. Wikipedia: "Boiling Water Reactor", 1-6-2008

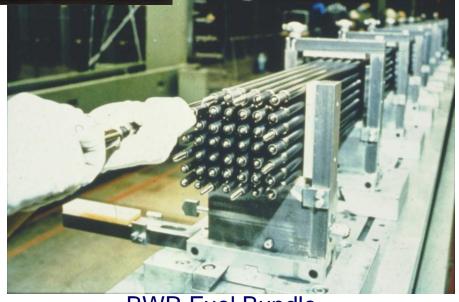
Reactor Safety Systems

- In order to satisfy DBA requirements, reactors are designed with a wide variety of active and passive safety features to:
 - Ensure that the chain reaction can be stopped in all credible scenarios
 - Prevent fuel from melting in all credible scenarios
 - Reactor designs also employ a **Defense-in-Depth** philosophy to prevent (or minimize) the release of radioactive material in severe accidents
 - Defense-in-Depth is inherent in the reactor design itself
 - Choice of materials
 - Plant designed with physical "layers" of defense
 - Layout of plant itself

Defense-in-Depth Design I


- The first defense layer begins with the uranium fuel rods, which contain
 - Ceramic UO₂ pellets...
 - High melting temperature
 - Will not easily dissolve or disintegrate into a fine powder
 - Trap non-gaseous fission products
 - ...sealed in a Zirconium alloy cladding
 - Corrosion resistant
 - Air-tight
 - Captures any gaseous fission products escaping fuel rods


Reactor Fuel


UO₂ Pellet

PWR Fuel Assembly

BWR Fuel Bundle

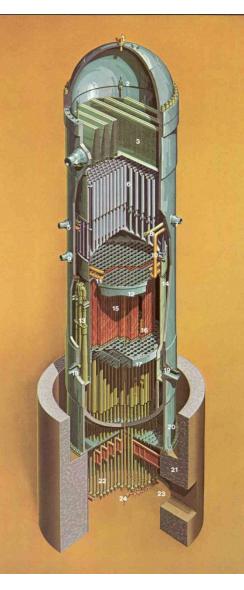
Defense-in-Depth Design II

- Fuel rods are bundled into assemblies for easy transport
 - 64 rods per bundle
 - Assemblies are surrounded by Zirconium alloy sleeves
 - Control rods are positioned between each set of 4 bundles.

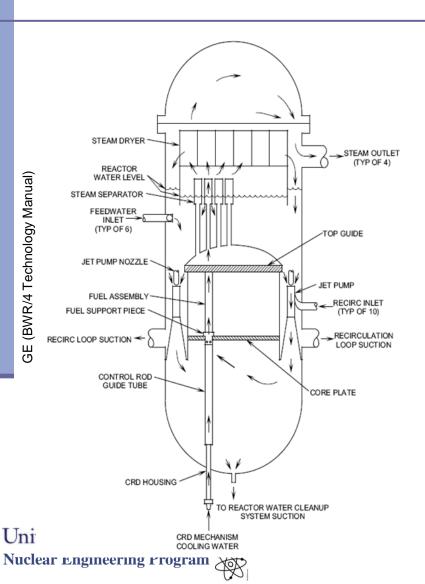
BWR/6 FUEL ASSEMBLIES & CONTROL ROD MODULE

> 1 TOP FUEL GUIDE 2.CHANNEL FASTENER 3. UPPER TIE P_ATE 4 EXPANSION SPRING 51 OCKING TAB 6.CHANNEL CONTROL ROD B.FUEL ROD 9.SPACER 10.CORE PLATE ASSEMBLY 11.LOWER THE PLATE 12.FUEL SUPPORT PIECE 13.FUEL PELLETS 14.END PLUG 15.CHANNEL SPACER 16. PLENUM SPRING

GENERAL 🍪 ELECTRIC

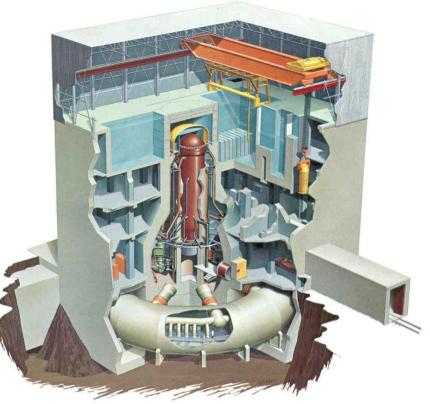


Defense-in-Depth III


- Fuel assemblies are loaded into cylindrical pressure vessel
 - Stainless steel clad
 - Contains 732 fuel assemblies
 - Water is pumped upward through fuel to remove heat
 - Sealed vessel contains debris in accident scenario
 - Designed to withstand high pressures in case of reactor overheating

BWR/6				
REACTOR ASSEMBLY				
1. VENT AND HEAD SPRAY				
2. STEAM DRYER LIFTING LUG				
3. STEAM DRYER ASSEMBLY				
4. STEAM OUTLET				
5. CORE SPRAY INLET				
6. STEAM SEPARATOR ASSEMBLY				
7. FEEDWATER INLET				
8. FEEDWATER SPARGER				
9. LOW PRESSURE COOLANT INJECTION INLET				
10. CORE SPRAY LINE				
11. CORE SPRAY SPARGER				
12. TOP GUIDE				
13. JET PUMP ASSEMBLY				
14. CORE SHROUD				
15. FUEL ASSEMBLIES				
16. CONTROL BLADE				
17. CORE PLATE				
18. JET PUMP/RECIRCULATION WATER INLET				
19. RECIRCULATION WATER OUTLET				
20. VESSEL SUPPORT SKIRT				
21. SHIELD WALL				
22. CONTROL ROD DRIVES				
23. CONTROL ROD DRIVE HYDRAULIC LINES				
24. IN-CORE FLUX MONITOR				
GENERAL 🎊 ELECTRIC				

Defense-in-Depth IV

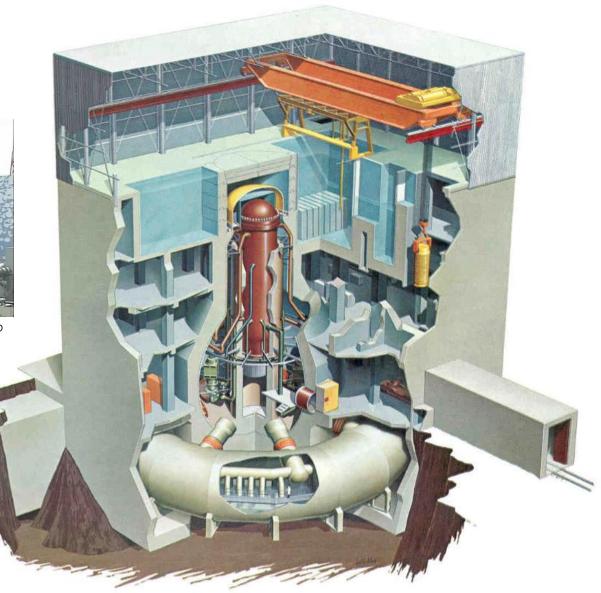

Design Features (Passive)

- Water level far above top of fuel
- Coolant flows upward through fuel
 - These features promote natural circulation of coolant through system
- Core vessel penetrations located above fuel in core
 - Prevent water from leaving core in accident

Defense-in-Depth V

Containment

- Core vessel is enclosed in a larger containment vessel
- Sealed steel container shaped like an inverted lightbulb (drywell).
- Prevents escape of material leaking out of reactor core or connected piping
- Includes suppression pool filled with water (wetwell)
 - Excess steam in reactor core can be condensed by venting through pool to reduce pressure.

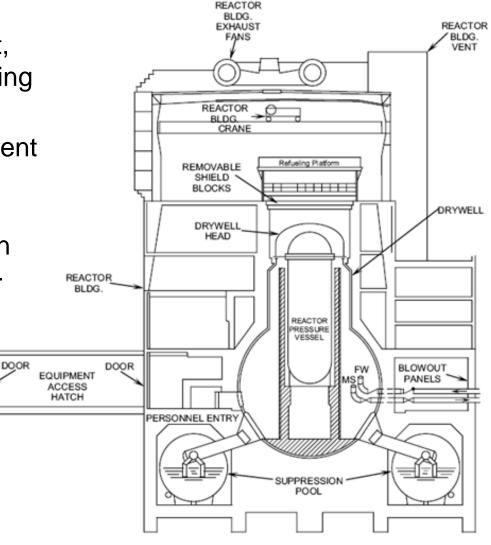

DRYWELL TORUS

GENERAL 🍪 ELECTRIC

Fukushima Dai-Ichi 3

NHK/TEPCO

DRYWELL TORUS



GENERAL 🍪 ELECTRIC

Defense-in-Depth V

Reactor Building

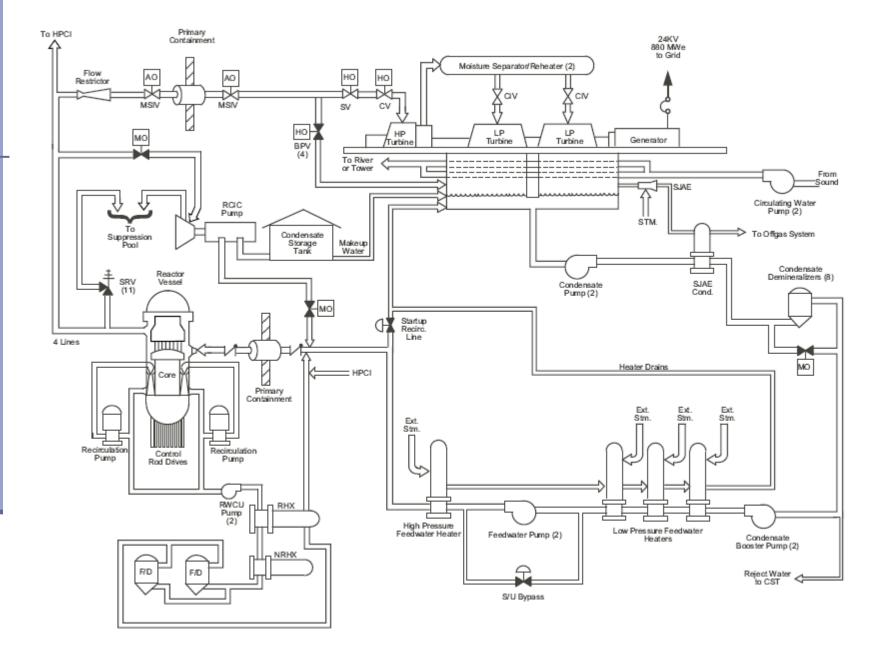
- Surrounding containment, intended to shelter refueling floor and spent fuel pool.
- Contains support equipment
 - Including air handling equipment and filters
- Not usually considered an official part of defense-indepth

Fukushima Spent Fuel Pool / Refueling Crane

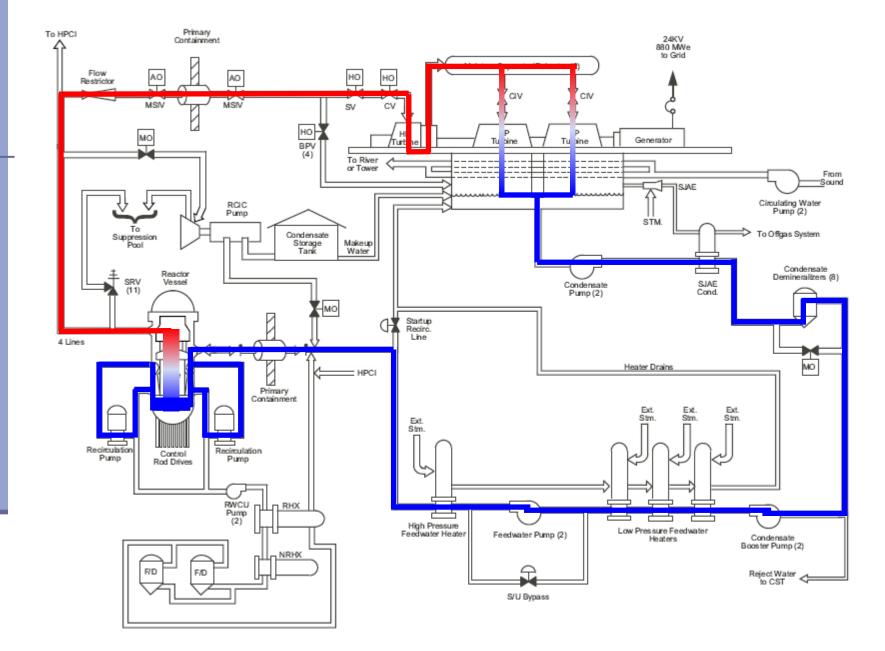
GENERAL 🍘 ELECTRIC

Engineered Safety Systems

- Engineered safety systems in a reactor are designed to stabilize the reactor and prevent fuel melting in accident scenarios
- Reactors include a variety of active and passive systems
 - Passive safety systems
 - Systems that respond naturally without operator intervention or external power
 - Active safety systems
 - Systems that rely on mechanical equipment and electrical power (pumps, motors, motor operated valves, etc.)


Engineered Safety Systems

- In order to minimize the risk of engineered safety systems failing, nuclear plant designs emphasize
 - Redundancy / Flexibility
 - Is there a back-up component that can do the task if the primary fails to start? Can the system be reconfigured to handle unusual conditions or multiple failures?
 - Diversity
 - Having multiple different types of active safety systems provides extra insurance
 - Physical Separation


systems

University of Pittsburgh Nuclear Engineering Program

 Making sure that safety systems are spread around the plant reduces the risk that an accident can damage all of the

At Power BWR Cooling

Meltdown

- What if all engineered safety systems fail and the fuel starts to melt? Is this the meltdown?
 - Meltdown is not a technical term so there is no precise definition
- If cooling to the core is lost then the decay heat produced by the fuel will cause coolant to boil off and will leave some (or eventually) all of the fuel uncovered
 - Once the fuel rods are no longer covered by water melting will begin
 - Due to Defense-in-Depth design the melting process should follow a predictable sequence

Fuel Melting / Core Degradation

- For an uncooled reactor (after fuel is uncovered)
 - Zirconium cladding will blister / rupture
 - Zirconium cladding will oxidize away
 - Fuel pellets will fall out of rods, collecting in reactor bottom
 - Fuel pellets will eventually melt, causing molten UO₂ to slump to the bottom of the core vessel
 - Eventually the molten fuel will melt through the bottom of the core vessel and flow into containment
 - May occur in as little as a few hours
 - Rising temperatures will cause pressure to increase until containment fails via
 - Over-pressurization

 Fuel melting through the containment wall or concrete basemat University of Pittsburgh Nuclear Engineering Program &

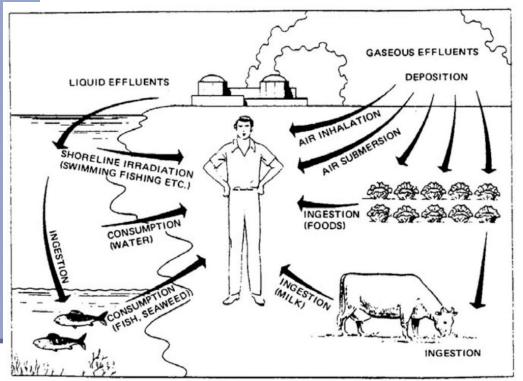
Secondary Effects

Zirconium Oxidation

With apologies to the chemists for this simplification of oxidation

melting Zr explode University of Pittsburgh Nuclear Engineering Program

Additional problems created by fuel


- Over-pressure (mechanical failure)
- Steam explosions
 - If molten fuel drops into liquid water
- Exothermic chemical reactions
 - Fuel/concrete interactions
 - Clad/water interactions
 - Zirconium and Stainless Steel readily oxidize at high temperature (highly exothermic)
 - Reactions release hydrogen which can
- Radiolysis of water
 - Gamma radiation can break water molecules apart, creating hydrogen gas

Environmental Release

- Once containment fails, radioactive materials (molten fuel and volatile/gaseous fission products) have entered the environment.
- The real dangers:
 - Many fission products are radioactive and others are quite toxic
 - An uncontrolled environmental release means that these nuclides can be inhaled directly or ingested by eating contaminated food

Environmental Release

Reproduced from Knief, 1992, Nuclear Engineering

Once outside of containment, tracking the transport of radionuclides becomes very complicated

The study of the release, transport and human effect of radionuclides is covered by a branch of nuclear engineering called health physics

Environmental Release

Isotope	Radio- active half-life T _{1/2}	Fission yield (%)	Deposi- tion fraction‡	Effective half-life	Internal dose (mrem/ µCi)	Reactor inventory [§] [Ci/kW(th)]	
						400 Days	Equilibriu
Bone							
89 Sr	50 d	4.8	0.28	50 d	413	43.4	43.6
90 Sr-90 Y	28 y	5.9	0.12	18 y	44,200	1.45	53.6
91 Y	58 d	5.9	0.19	58 d	337	53.2	53.6
144 Ce-144 Pr	280 d	6.1	0.075	240 d	1,210	34.7	55.4
Thyroid						Call Color	
¹³¹ I	8.1 d	2.9	0.23	7.6 d	1,484	26.3	26.3
¹³² I	2.4 h	4.4	0.23	2.4 h	54	40.0	40.0
133 I	20 h	6.5	0.23	20 h	399	59.0	59.0
134 I	52 m	7.6	0.23	52 m	25	69.0	69.0
135 I	6.7 h	5.9	0.23	6.7 h	124	53.6	53.6
Kidney							
103 Ru-103 mRh	40 d	2.9	0.01	13 d	6.9	26.3	26.3
106 Ru-106 Rh	1.0 y	0.38	0.01	19 d	65	1.8	3.5
¹²⁹ mTe- ¹²⁹ Te	34 d	1.0	0.02	10 d	46	9.1	9.1
Muscle							
¹³⁷ Cs- ¹³⁷ mBa	33 y	5.9	0.36	17 d	8.6	1.2	53.6

Of primary concern are fission products that are readily absorbed by the body and the actinides, which act as heavy metal poisons

Has Nuclear Fuel Ever Melted?

Unfortunately, yes.

- There have actually been ~50-100 reactor accidents over the last 60 years
 - Many in Russia, but a surprisingly large number in the US (mostly in research reactors during the first two decades)
 - Most were minor, with a small amount of fuel damage (most reactors were refueled and returned to service)
- Four accidents stand out above the rest

Notable Reactor Accidents

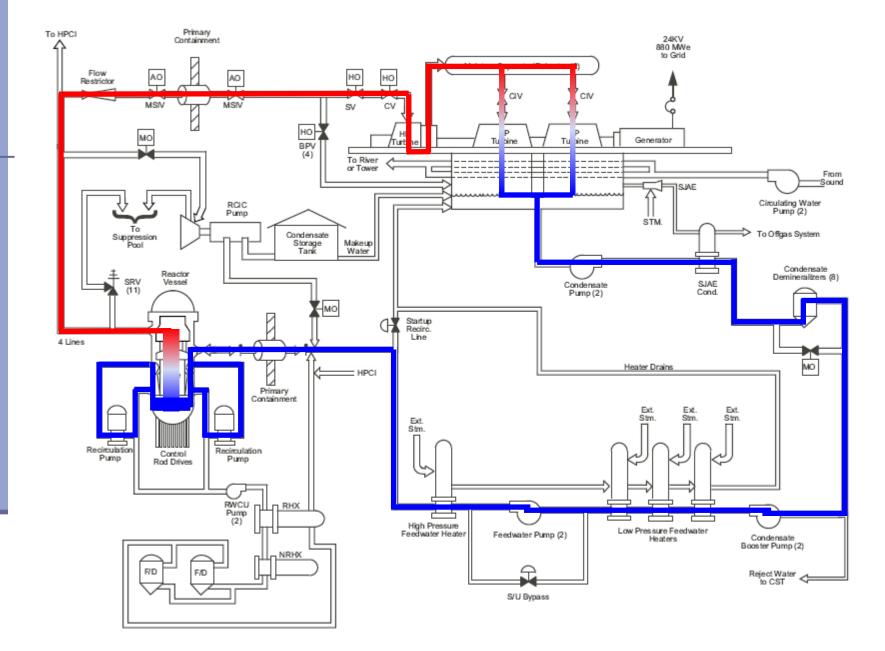
SL-1 (Idaho)

 Criticality excursion destroyed reactor and killed three operators. Little release of contamination in spite of the fact that SL-1 did not have containment.

Three Mile Island (Pennsylvania)

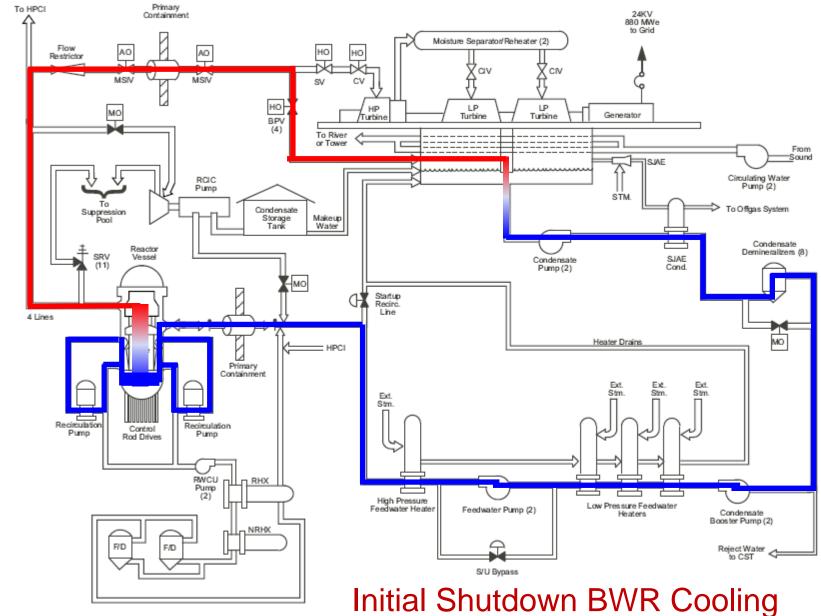
50-80% of fuel in core melted. Reactor core and vessel was a total loss. Containment held. No fatalities.

Chernobyl (Russia)


- Positive void coefficient caused reactivity excursion which created a steam explosion and destroyed the plant.
 "Containment" was destroyed
- Spread radioactive debris over a large area
- Fukushima Daiichi (Japan)

Fukushima Daiichi Accident

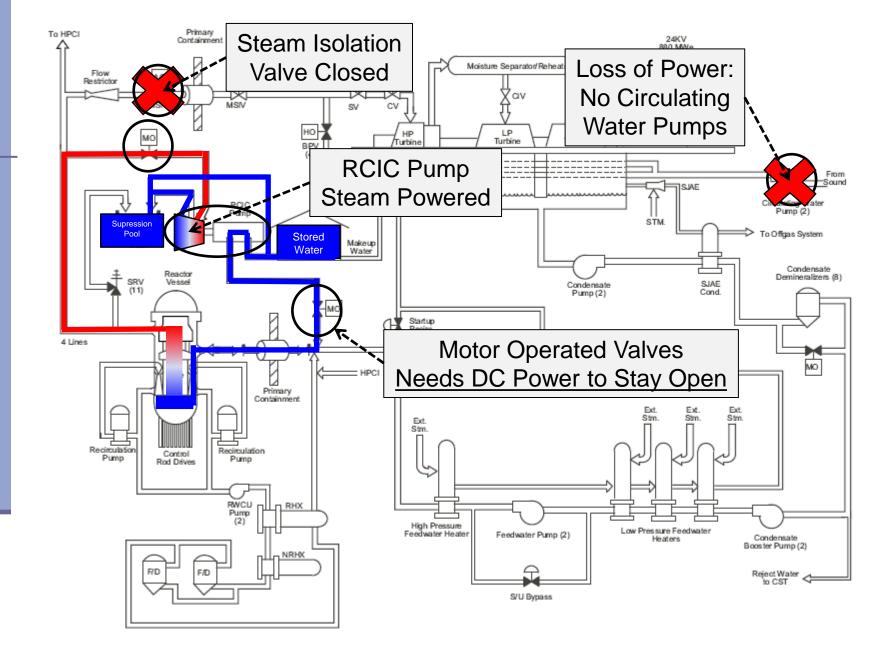
- Following the March 11th earthquake multiple failures occurred at several units at the Fukushima power station, preventing normal cooling operations.
- Presently units 1, 2, 3, and 4 have suffered damage, including (it is believed) some amount of fuel failure.
- The situation is continually evolving and many of the facts are not yet known.
- The following slides provide the probable sequence of events leading to fuel melting at Fukushima Daiichi Unit I following the earthquake.



At Power BWR Cooling

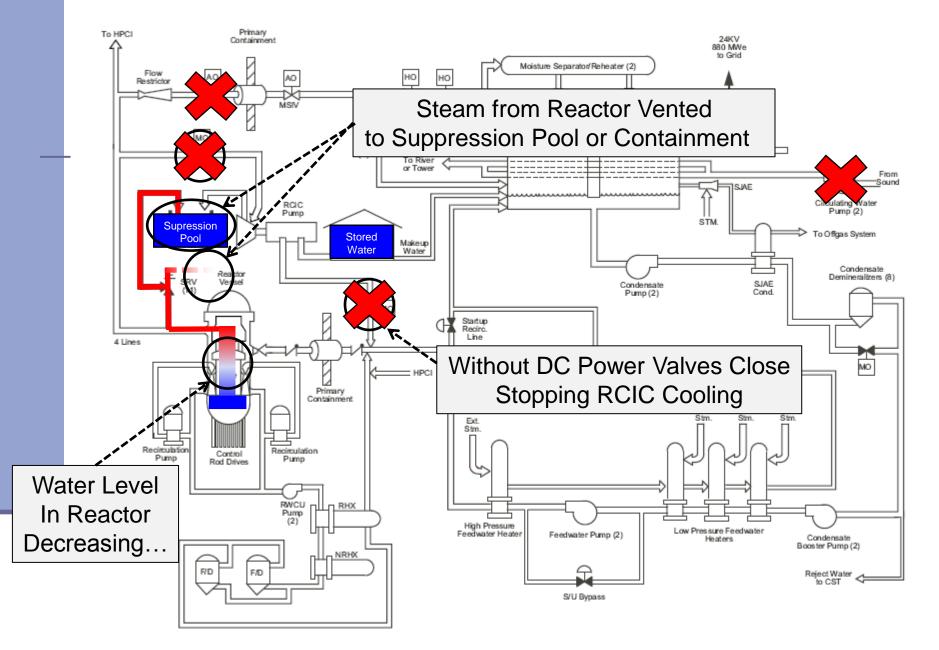
Fukushima Timeline

- Prior to earthquake Fukushima I Units 1,2, and 3 were operating at full power.
 - Units 4, 5, and 6 were down for scheduled maintenance
- Magnitude 9.0 Earthquake hits. All reactors insert control rods and shut down. Chain reaction stops immediately.
- As reactor power coasts down (due to decay of shortlived fission products), steam produced in the reactor is dumped directly into the condenser, bypassing the turbine. This is normal shutdown operating procedure.


Initial Shutdown BWR Cooling (Until pressure below 120 psig)

- Power lines and distribution yard are destroyed causing loss of off-site power.
 - First off-normal condition
 - Probably due to shaking from earthquake.
 - Loss of off-site power is an anticipated scenario and nuclear plants are well trained to respond.
- Emergency diesel generators kick in to support inhouse electrical loads for core cooling.
- Circulating water pumps (to cool condenser) are not powered by emergency diesel generators.

- During loss of off-site power circulating water pumps (to cool condenser) shut down, as designed.
- Main steam isolation valves are closed, routing steam away from the main condenser
- The Reactor Core Isolation Cooling (RCIC) System, a passive backup cooling system, takes over core cooling, as designed
 - RCIC uses turbine driven pumps powered by steam created in reactor
 - Condenses steam to suppression pool
 - Draws feedwater from suppression pool and external condensate tank
 - RCIC system requires DC power to keep motor operated valves in the open position (fail-safe valve position is closed) and operate pump control/throttle.


Reactor Isolation Cooling

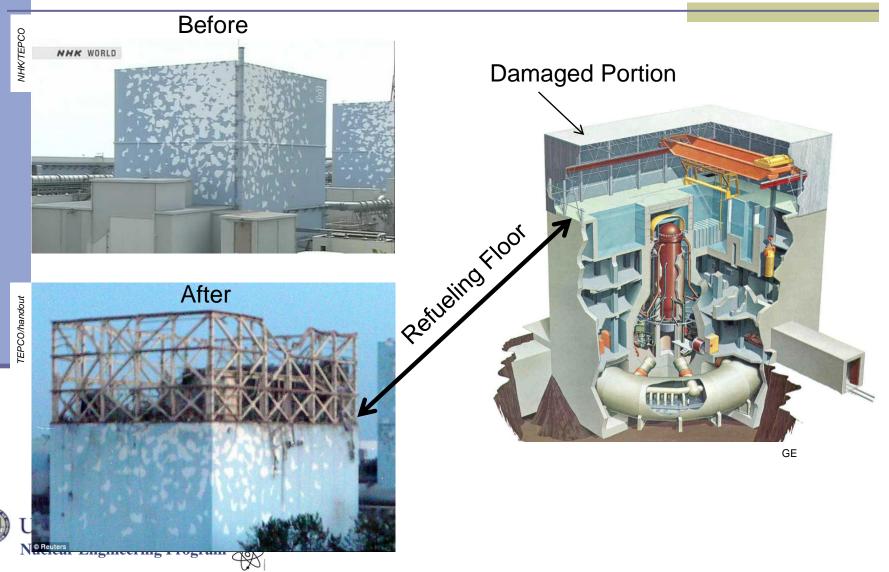
- One hour after the earthquake a 10+ meter (33') tsunami hits the power station.
- <u>All</u> 13 emergency diesel generators on site (~2 per reactor) are disabled by tsunami damage
 - Diesel generators were located 10-13 meters above sea level
 - Second concurrent failure (along with loss of off-site power)
 - Beyond design basis tsunami / at the limit of the design basis loss of power accident
 - Emergency electrical loads in the plant switch to battery backup, as designed
 - Core Isolation Cooling (RCIC) system continues cooling the core without interruption, as designed
 - DC power is required to keep valves open so that RCIC can continue working

- After 8 hours backup batteries run out and the RCIC can no longer be used (valves return to fail-safe closed position)
- Complete station blackout.
 - Third failure. No active safety systems remain, just passive design features and defense-in-depth layers.
 - Beyond design basis accident.
- Steam is bubbled through suppression pool, further increasing temperature of water, but condensing steam and keeping pressure at manageable levels, as designed
- Water leaving the core is not replaced, causing the water level in the core to drop.

University of Pittsburgh Nuclear Engineering Program

Station Blackout – No Injection

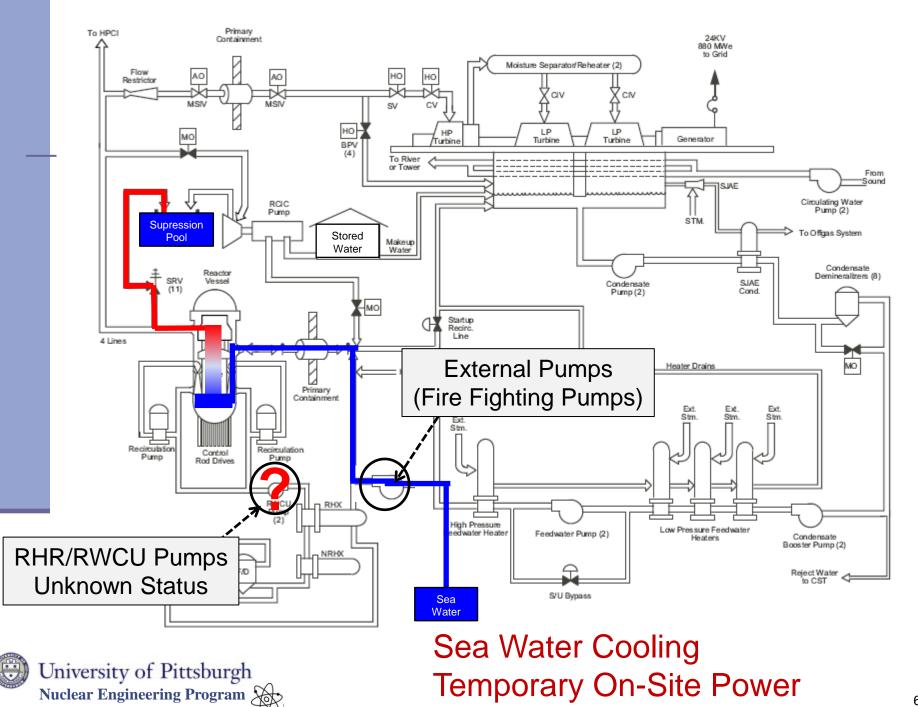
- As the water level dropped below the top of the fuel, the temperature in the fuel and cladding began to rise rapidly, causing fuel degradation
 - Clad failure (blister/rupture) allows gaseous fission products in fuel to escape
 - Zirconium in clad oxidizes in the presence of steam, releasing hydrogen into containment wetwell/drywell
- Uncertain how much fuel was uncovered by water or how much melting/fuel failure has taken place.
- During the station blackout, operators focused on the third layer of defense: <u>containment</u>
 - No matter what happens in the core, prevent release of material to the environment


- After a short time pressure levels in containment were at or above the design pressure, raising the risk of a containment rupture due to over-pressurization
- Operators manually opened a valve to release steam from containment into the reactor building.
 - This was done to prevent an overpressure of containment and the possible uncontrolled release of radioactive material.
 - Vented steam contained hydrogen, which ignited, destroying the reactor building, but not damaging containment...
 - ...but, spent fuel pool is now exposed to the elements
 - Units 3 and 4 later suffer similar explosions

Hydrogen Explosion

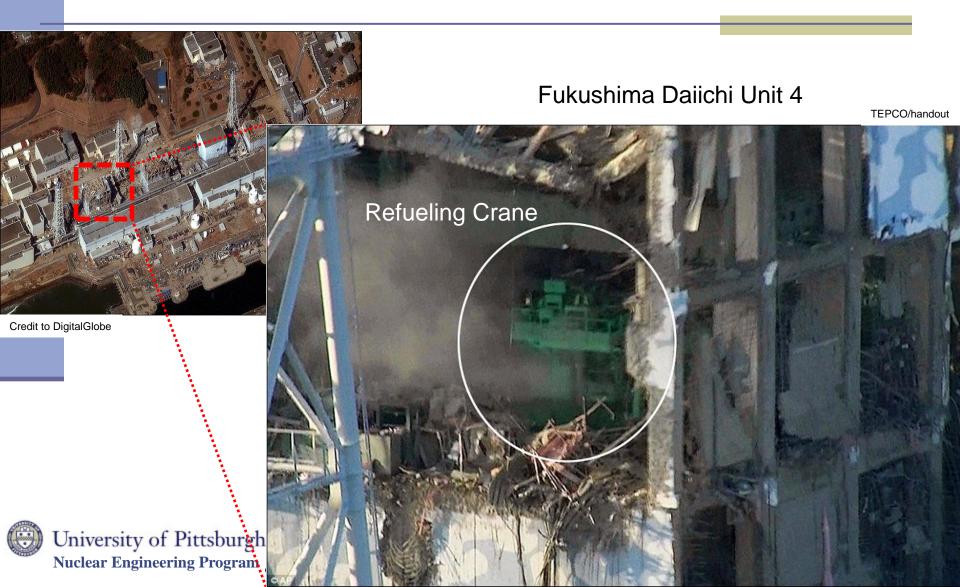
Hydrogen Explosion

Hydrogen Explosions



- Following the release elevated radiation levels were detected at the reactor building and at the plant boundary.
- Released steam contained hydrogen and detectable levels of several fission products (Cs-137, I-131)
 - This provided the first indication that some cladding/fuel in the reactor had already failed.

- Backup generators (and batteries) arrived some hours later, restoring partial DC power to plant.
 - It appears that generators were insufficient to power any of the installed cooling system pumps
 - Instead, smaller, portable (fire) pumps were used to pump borated sea water into the reactor core and containment
- Use of sea water guarantees unlimited supply of coolant to pump into reactor.
 - Plants will need to be decommissioned due to corrosion issues from sea water



Current Plant Status

Current Plant Status

Current Plant Status

			Status of Fukushima at 21:00 on 30 March ⁽¹⁵²⁾	1	1					
	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6				
Power output (MWe)	460	784	784	784	784	1100				
Type of reactor	BWR-3	BWR-4	BWR-4	BWR-4	BWR-4	BWR-5				
Status at earthquake	In service -> shutdown	In service -> shutdown	In service -> shutdown	Outage	Outage	Outage				
Core and Fuel Integrity (Loaded fuel assemblies)	Damaged (400)	Damaged (548)	Damaged (548)	No fuel rods	Not damaged (548)	Not damaged (764)				
Pressure vessel integrity	Unknown	Unknown	Unknown	Not damaged	Not damaged	Not damaged				
Containment integrity	Not Damaged (estimation)	Damage and Leakage Suspected	Not Damaged (estimation)	Not damaged	Not damaged	Not damaged				
Core cooling system 1 (ECCS/RHR)	Not functional	Not functional	Not functional	Not necessary	Functional	Functional				
Core cooling system 2 (RCIC/MUWC)	Not functional	Not functional	Not functional	Not necessary	Functioning (in cold shutdown)	Functioning (in cold shutdown)				
Building integrity	Severely damaged	Slightly damaged	Severely damaged	Severely damaged	Vent hole opened on rooftop to prevent hydrogen explosion	Vent hole opened on rooftop to prevent hydrogen explosion				
Reactor pressure vessel, water level	Fuel exposed	Fuel exposed	Fuel exposed	Safe	Safe	Safe				
Reactor pressure vessel, pressure	radually increasing / Decreased a little after increasing over 400°C on 24th Unknown / Stable		Unknown	Safe	Safe	Safe				
Containment pressure	Decreased a little after increasing up to 0.4Mpa on 24th	Stable	Stable	Safe	Safe	Safe				
Seawater injection into core	Continuing	Continuing	Continuing	Not necessary	Not necessary	Not necessary				
Seawater injection into containment building	(confirming)	To be decided	(confirming)	Not necessary	Not necessary	Not necessary				
Containment venting	Temporarily stopped	Temporarily stopped	Temporarily stopped	Not necessary	Not necessary	Not necessary				
Integrity of fuel in Spent Fuel Pool (Stored spent fuel assemblies)	Unknown (292)	Unknown (587)	Damage Suspected (514)	Possibly damaged (1331)	Not Damaged (948)	Not Damaged (876)				
Cooling of the Spent Fuel Pool (SFP)	Water injection to be considered	Seawater Injection continue	Seawater spray continue and certain effect was confirmed	Water injection continuing, Hydrogen from SFP exploded	Pool cooling capability was recovered	Pool cooling capability was recovered				
Main Control Room Habitability & Operability	Poor due to loss of AC power (Lighting has been recovered)	Poor due to loss of AC power (Lighting has been recovered)	Poor due to loss of AC power (Lighting has been recovered)	Poor due to loss of AC power (Lighting has been recovered)	Not damaged (estimate)	Not damaged (estimate)				
Environmental effect (NPS border)	Radiation level: 1.05 mSv/h at the south side of the office building. 183 µSv/h at the main gate, 75 µSv/h at the West gate, as of 15:00, 30 March. Radioactive material was detected from milk and agricultural products from Fukushima and neighboring prefectures. The government issues order to limit shipment (21 March) and intake (23 March) for some products from sexes. Radioactive lodine, Casium, Ruthenium, and Tellurium were detected from tap water sample office building the power station. Nuclear Safety Commission of Japan released prediction of radioactive material preducts from tap water sample collected in the sea surrounding the power station. Nuclear Safety Commission of Japan released prediction of radioactive material preducts from sexues. Radioactive lodine, Casium, Ruthenium, and Tellurium were detected from seawater sample collected in the sea surrounding the power station. Nuclear Safety Commission of Japan released prediction of radioactive material preducts preducts from the solid of the Fukushima and neighboring prefectures. The government issues order to limit shipment (21 March) sea on the computer model SPEEDI (System for Prediction of Environmental Emergency Dose Information). ¹¹²⁸ Radiation higher than 1000 mSv/h was measured at the surface of water accumulated in the tunnel for laying piping outside Unit 2 turbine building on 27 March. Plutonium was detected from the soil of the Fukushima I site on 28 March at very low levels.									
Evacuation radius	20 km from Nuclear Power Station. People who live between 20km to 30km from Fukushima I should consider leaving.									
INES (estimated by NISA)	Level 5	Level 5	Level 5	Level 3	-	-				
Remarks	 Progress of the work to recover injection function: Water circulation for the reactor pressure vessel by temporary pumps was switched from seawater to freshwater at Units 1, 2 and 3 on 28 March, due to concern about possible erosion. High radiation is making work to restore the functioning of the original pumps difficult. Removal of water containing high concentrations of radionucides from the basements of buildings of Units 1 through 3 was partly begun on 28 March but will take time to complete. Three workers were sent to the hospital after heavily exposure on 24 March and discharged on 28 March. Function of containing radioactive material: It is presumed that radioactive material inside the reactor vessel would have leaked outside the containment vessel at Units 1, 2 and Unit 3, based on the investigation of the water samples in the turbine building from 24 to 27 March. On 30 March, NISA said that air may be leaking from the Reactor Pressure Vessel of Units 2 and 3 been conducted on and off since 17 March. Cooling the spent fuel pool: Steam-like vapor rose intermittently from the reactor buildings at Units 1, 2, 3 and 4 has been observed. Injecting and/or spraying water into the spent fuel pool has been conducted on and off since 17 March. 									

Timeline of the Fukushima nuclear accidents - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Timeline_of_the_Fukushima_nuclear_accidents Screen clipping taken: 3/31/2011 11:26 PM

What Now?

Post-Accident Response

- Coordination with local officials
 - Evacuation
 - Complicated by destruction of infrastructure
- Radiation Monitoring (air, water, and people)
 - In containment
 - Outside of containment
 - At plant fence
- Cleanup / Decontamination

Accident Response

Protection (Short-Term)

- Evacuations (based on monitoring)
- Masks to prevent inhalation
- Hygiene to prevent spread of contamination
- Iodine tablets

US Navy

- Protection/Remediation (Long-Term)
 - Monitoring all environmental pathways
 - We can detect radiation, identify radioactive contamination, and remove it from the food chain.
 - Decontamination: Soap and Water
 - Burial of contaminated waste

USDA

USDA

Acknowledgements

- Special thanks to Professors J.D. Metzger, D.W. Helling, and D. Haser for their many helpful suggestions, comments, and corrections during the development of this presentation.
- Also, thanks to
 - University of Pittsburgh, College of Engineering
 - The students of ENGR 1701
 - This presentation was prepared for ENGR 1701 and is intended for educational use only

